Difference between revisions of "Chi"
From specialfunctionswiki
Line 1: | Line 1: | ||
The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula | The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula | ||
− | $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t) | + | $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t,$$ |
− | where $\ | + | where $\cosh$ denotes the [[cosh|hyperbolic cosine]]. |
<div align="center"> | <div align="center"> |
Revision as of 22:52, 23 May 2016
The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t,$$ where $\cosh$ denotes the hyperbolic cosine.
Domain coloring of $\mathrm{Chi}$.