Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
Line 11: Line 11:
  
 
<center>{{:*-integral functions footer}}</center>
 
<center>{{:*-integral functions footer}}</center>
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:47, 24 May 2016

The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t,$$ where $\cosh$ denotes the hyperbolic cosine.

<center>$\ast$-integral functions
</center>