Difference between revisions of "Binomial coefficient"
From specialfunctionswiki
Line 45: | Line 45: | ||
</div> | </div> | ||
− | + | [[Binomial theorem]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
=Videos= | =Videos= |
Revision as of 02:18, 4 June 2016
The binomial coefficients are defined by the formula $${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$
Properties
Proposition: $\displaystyle{n \choose k} = {n \choose {n-k}} = (-1)^k {{k-n-1} \choose k}$
Proof: █
Proposition: $\displaystyle{{n+1} \choose k} = {n \choose k} + {n \choose {k-1}}$
Proof: █
Proposition: ${n \choose 0} = {n \choose n} = 1$
Proof: █
Proposition: $1 + \displaystyle {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = 2^n$
Proof: █
Proposition: $1 - \displaystyle {n \choose 1} + {n \choose 2} - \ldots + (-1)^n {n \choose n} =0$
Proof: █
Videos
Pascal's Triangle and the Binomial Coefficients
Example of choose function (Binomial Coefficient)
Binomial coefficients