Difference between revisions of "Dirichlet eta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define
 
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define
 
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$
 
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$
This series is clearly the [[Riemann zeta function]] with alternating terms.
 
  
 
<div align="center">
 
<div align="center">

Revision as of 19:49, 23 June 2016

Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$

See Also

Riemann zeta