Difference between revisions of "Dedekind eta"
From specialfunctionswiki
Line 10: | Line 10: | ||
=Properties= | =Properties= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=References= | =References= |
Revision as of 19:51, 24 June 2016
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
Properties
References
A collection of over 6200 identities for the Dedekind Eta Function