Difference between revisions of "Factorial"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
 
Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer  
 
Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer  
 
$$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$
 
$$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$
 +
 +
=Properties=
 +
[[0!=1]]<br />
  
 
=See Also=
 
=See Also=

Latest revision as of 19:40, 9 October 2016

Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer $$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$

Properties

0!=1

See Also

Gamma function