Difference between revisions of "Thomae function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 30: Line 30:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The [[Thomae function]] $f(x)$ is [[Riemann integral|Riemann integrable]] and  
 
<strong>Theorem:</strong> The [[Thomae function]] $f(x)$ is [[Riemann integral|Riemann integrable]] and  
$$\displaystyle\int_0^1 f(x) dx = 0.$$
+
$$\displaystyle\int_0^1 f(x) \mathrm{d}x = 0.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 06:10, 25 May 2016

Thomae's function (sometimes called the popcorn function, raindrop function, Stars over Babylon) is given by the formula $$f(x) =\begin{cases} 1 & \text{if } x= 0 \\ \tfrac1{q} & \text{if } x = \tfrac{p}{q}\\ 0 & \text{if } x \in \mathbb{R}-\mathbb{Q}. \end{cases}$$


Properties

Theorem: The Thomae function is continuous at all irrational numbers and discontinuous at all rational numbers.

Proof:

Theorem: The Thomae function has a (strict) local maximum at each rational number.

Proof:

Theorem: The Thomae function $f(x)$ is Riemann integrable and $$\displaystyle\int_0^1 f(x) \mathrm{d}x = 0.$$

Proof:

Videos

Thomae Function by Douglas Harder
Thomae Function by Bret Benesh

See also

Modifications of Thomae's Function and Differentiability

References

[1]
[2]
[3]