Difference between revisions of "Ramanujan theta function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by
 
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by
$$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$
+
$$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{k(k+1)}{2}} b^{\frac{k(k-1)}{2}}.$$
 +
 
 +
=Properties=
 +
 
 +
=References=
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 15:59, 10 July 2017

Let $|ab|<1$. The Ramanujan theta function $f$ is defined by $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{k(k+1)}{2}} b^{\frac{k(k-1)}{2}}.$$

Properties

References