Difference between revisions of "Q-Pochhammer"
From specialfunctionswiki
Line 5: | Line 5: | ||
=Properties= | =Properties= | ||
− | + | [[Relationship between q-factorial and q-pochhammer]]<br /> | |
− | + | [[Relationship between Euler phi and q-Pochhammer]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{:q-calculus footer}} | {{:q-calculus footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 03:30, 22 June 2016
$$(a;q)_n=\dfrac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}\stackrel{n \in \mathbb{Z}^+}{=} \displaystyle\prod_{j=0}^{n-1} (1-aq^j)$$ $$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^j)$$
$$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}$$
Properties
Relationship between q-factorial and q-pochhammer
Relationship between Euler phi and q-Pochhammer