Difference between revisions of "Antiderivative of sech"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)) + C,$$ | $$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)) + C,$$ | ||
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 07:05, 9 June 2016
Theorem
The following formula holds: $$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)) + C,$$ where $\mathrm{sech}$ denotes the hyperbolic secant, $\arctan$ denotes the inverse tangent, and $\sinh$ denotes the hyperbolic sine.