Difference between revisions of "Elliptic E"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Elliptice plot.png|Plot of $E(m)$ on $[-10,1]$.
+
File:Ellipticeplot.png|Plot of $E(m)$ on $[-10,1]$.
 
File:Complexellipticeplot.png|[[Domain coloring]] of $E$.
 
File:Complexellipticeplot.png|[[Domain coloring]] of $E$.
 
</gallery>
 
</gallery>

Revision as of 16:59, 25 May 2016

If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} \mathrm{d}\theta.$$

See Also

Elliptic K
Incomplete Elliptic E

References

"Special Functions" by Leon Hall