Difference between revisions of "Relationship between coth and csch"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between coth and csch|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{coth} \left( \dfrac{z}{2} \right) - \mathrm{coth}(z) = \mathrm{csch}(z),$$
 
$$\mathrm{coth} \left( \dfrac{z}{2} \right) - \mathrm{coth}(z) = \mathrm{csch}(z),$$
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]].
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 03:54, 17 June 2016

Theorem

The following formula holds: $$\mathrm{coth} \left( \dfrac{z}{2} \right) - \mathrm{coth}(z) = \mathrm{csch}(z),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent and $\mathrm{csch}$ denotes the hyperbolic cosecant.

Proof

References