Difference between revisions of "Ceiling"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | The ceiling function $\mathrm{ceil} \colon \mathbb{R} \rightarrow \mathbb{Z}$ is defined by | + | The ceiling function $\mathrm{ceil} \colon \mathbb{R} \rightarrow \mathbb{Z}$ (sometimes written $\lceil x \rceil$) is defined by |
$$\mathrm{ceil}(x) = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ | $$\mathrm{ceil}(x) = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ | ||
− | i.e., the smallest integer greater than or equal to $x | + | i.e., the smallest integer greater than or equal to $x$. |
<div align="center"> | <div align="center"> |
Revision as of 00:42, 23 December 2016
The ceiling function $\mathrm{ceil} \colon \mathbb{R} \rightarrow \mathbb{Z}$ (sometimes written $\lceil x \rceil$) is defined by $$\mathrm{ceil}(x) = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ i.e., the smallest integer greater than or equal to $x$.