Difference between revisions of "Q-number"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
Let $q \in \mathbb{C} \setminus \{1\}$ and define the $q$ numbers
+
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by
$$[0]_0=0$$
+
$$[a]_q=\dfrac{1-q^a}{1-q}.$$
and for $n>0$ a positive integer,
+
We define $[0]_q=0$ and if $a_n \in \left\{1,2,\ldots \right\}$, then we get
$$[n]_q=\dfrac{1-q^n}{1-q}=1+q+q^2+\ldots+q^{n-1}.$$
+
$$[n]_q = \displaystyle\sum_{k=1}^n q^{k-1}.$$
 +
 
 +
=References=
 +
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=}}: (6.1)
 +
 
 +
[[Category:SpecialFunction]]

Revision as of 22:24, 16 June 2016

Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by $$[a]_q=\dfrac{1-q^a}{1-q}.$$ We define $[0]_q=0$ and if $a_n \in \left\{1,2,\ldots \right\}$, then we get $$[n]_q = \displaystyle\sum_{k=1}^n q^{k-1}.$$

References