Difference between revisions of "Book:Aleksandar Ivić/The Riemann Zeta-Function"
From specialfunctionswiki
Line 1: | Line 1: | ||
{{Book|The Riemann Zeta-Function: Theory and Applications|1985|Dover Publications, Inc|0-486-42813-3|Aleksandar Ivić}} | {{Book|The Riemann Zeta-Function: Theory and Applications|1985|Dover Publications, Inc|0-486-42813-3|Aleksandar Ivić}} | ||
− | |||
− | |||
− | |||
− | |||
=== Contents === | === Contents === | ||
− | |||
:: ''PREFACE'' | :: ''PREFACE'' | ||
− | |||
:: ''NOTATION'' | :: ''NOTATION'' | ||
− | |||
:: ''ERRATA'' | :: ''ERRATA'' | ||
− | |||
: ''1. ELEMENTARY THEORY'' | : ''1. ELEMENTARY THEORY'' | ||
:: 1.1. Definition of $\zeta \left({s}\right)$ and Elementary Properties | :: 1.1. Definition of $\zeta \left({s}\right)$ and Elementary Properties |
Revision as of 20:32, 9 June 2016
Aleksandar Ivić: The Riemann Zeta-Function: Theory and Applications
Published $1985$, Dover Publications, Inc
- ISBN 0-486-42813-3.
Contents
- PREFACE
- NOTATION
- ERRATA
- 1. ELEMENTARY THEORY
- 1.1. Definition of $\zeta \left({s}\right)$ and Elementary Properties
- 1.2. The Functional Equation
- 1.3. The Hadamard Product Formula
- 1.4. The Riemann-von Mangoldt Formula
- 1.5. An Approximate Functional Equation
- 1.6. Mean Value Theorems
- 1.7. Various Dirichlet Series Connected with $\zeta \left({s}\right)$
- 1.8. Other Zeta-Functions
- 1.9. Unproved Hypotheses
- 2. EXPONENTIAL INTEGRALS AND EXPONENTIAL SUMS
- 2.1. Exponential Integrals
- 2.2. Exponential Sums
- 2.3. The Theory of Exponent Pairs
- 2.4. Two-Dimensional Exponent Pairs
- 3. THE VORONOI SUMMATION FORMULA
- 3.1. Introduction
- 3.2. The Truncated Voronoi Formula
- 3.3. The Weighted Voronoi Formulas
- 3.4. Other Formulas of the Voronoi Type
- 4. THE APPROXIMATE FUNCTIONAL EQUATIONS
- 4.1. The Approximate Functional Equation for $\zeta \left({s}\right)$
- 4.2. The Approximate Functional Equation for $\zeta^2 \left({s}\right)$
- 4.3. The Approximate Functional Equation for Higher Powers
- 4.4. The Reflection Principle
- 5. THE FOURTH POWER MOMENT
- 5.1. Introduction
- 5.2. The Mean Value Theorem for Dirichlet Polynomials
- 5.3. Proof of the Fourth Power Moment Estimate
- 6. THE ZERO-FREE REGION
- 6.1. A Survey of Results
- 6.2. The Method of Vinogradov-Korobov
- 6.3. Estimation of the Zeta Sum
- 6.4. The Order Estimate of $\zeta \left({s}\right)$ Near $\sigma = 1$
- 6.5. The Deduction of the Zero-Free Region
- 7. MEAN VALUE ESTIMATES OVER SHORT INTERVALS
- 7.1. Introduction
- 7.2. An Auxiliary Estimate
- 7.3. The Mean Square When $\sigma$ Is in the Critical Strip
- 7.4. The Mean Square When $\sigma = \tfrac 1 2$
- 7.5. The Order of $\zeta \left({s}\right)$ in the Critical Strip
- 7.6. Third and Fourth Power Moments in Short Intervals
- 8. HIGHER POWER MOMENTS
- 8.1. Introduction
- 8.2. Some Convexity Estimates
- 8.3. Power Moments for $\sigma = \tfrac 1 2$
- 8.4. Power Moments for $\tfrac 1 2 < \sigma < 1$
- 8.5. Asymptotic Formulas for Power Moments When $\tfrac 1 2 < \sigma < 1$
- 9. OMEGA RESULTS
- 9.1. Introduction,
- 9.2. Omega Results When $\sigma \ge 1$
- 9.3. Lemmas on Certain Order Results
- 9.4. Omega Results for $\tfrac 1 2 \le \sigma \le 1$
- 9.5. Lower Bounds for Power Moments When $\sigma = \tfrac 1 2$
- 10. ZEROS ON THE CRITICAL LINE
- 10.1. Levinson's Method
- 10.2. Zeros on the Critical Line in Short Intervals
- 10.3. Consecutive Zeros on the Critical Line
- 11. ZERO-DENSITY ESTIMATES
- 11.1. Introduction
- 11.2. The Zero-Detection Method
- 11.3. The Ingham-Huxley Estimates
- 11.4. Estimates for $\sigma$ Near Unity
- 11.5. Reflection Principle Estimates
- 11.6. Double Zeta Sums
- 11.7. Zero-Density Estimates for $\tfrac 3 4 < \sigma < 1$
- 11.8. Zero-Density Estimates for $\sigma$ Close to $\tfrac 3 4$
- 12. THE DISTRIBUTION OF PRIMES
- 12.1. General Remarks
- 12.2. The Explicit Formula for $\psi \left({x}\right)$
- 12.3. The Prime Number Theorem
- 12.4. The Generalised von Mangoldt Function and the Möbius Function
- 12.5. Von Mangoldt's Function in Short Intervals
- 12.6. The Difference between Consecutive Primes
- 12.7. Almost Primes in Short Intervals
- 12.8. Sums of Differences between Consecutive Primes
- 13. THE DIRICHLET DIVISOR PROBLEM
- 13.1. Introduction
- 13.2. Estimates for $\Delta_2 \left({x}\right)$ and $\Delta_3 \left({x}\right)$
- 13.3. Estimates of $\Delta_k \left({x}\right)$ by Power Moments of the Zeta-Function
- 13.4. Estimates of $\Delta_k \left({x}\right)$ When $k$ Is Very Large
- 13.5. Estimates of $\beta_k$
- 13.6. Mean-square Estimates of $\Delta_k \left({x}\right)$
- 13.7. Large Values and Power Moments of $\Delta_k \left({x}\right)$
- 13.8. The Circle Problem
- 14. VARIOUS OTHER DIVISOR PROBLEMS
- 14.1. Summatory Functions of Arithmetical Convolutions
- 14.2. Some Applications of the Convolution Method
- 14.3. Three-Dimensional Divisor Problems
- 14.4. Powerful Numbers
- 14.5. Nonisomorphic Abelian Groups of a Given Order
- 14.6. The General Divisor Function $d_z \left({n}\right)$
- 14.7. Small Additive Functions
- 15. ATKINSON'S FORMULA FOR THE MEAN SQUARE
- 15.1. Introduction
- 15.2. Proof of Atkinson's Formula
- 15.3. Modified Atkinson's Formula
- 15.4. The Mean Square of $E \left({t}\right)$
- 15.5. The Connection Between $E \left({T}\right)$ and $\Delta \left({x}\right)$
- 15.6. Large Values and Power Moments of $E \left({T}\right)$
- APPENDIX
- REFERENCES
- AUTHOR INDEX
- SUBJECT INDEX