Difference between revisions of "Weierstrass factorization of sine"

From specialfunctionswiki
Jump to: navigation, search
Line 3: Line 3:
 
$$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$
 
$$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$
 
where $\sin$ is the [[sine]] function.
 
where $\sin$ is the [[sine]] function.
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==

Revision as of 00:31, 4 June 2016

Theorem

The following formula holds: $$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$ where $\sin$ is the sine function.

Proof

References