Difference between revisions of "Binomial coefficient"

From specialfunctionswiki
Jump to: navigation, search
Line 53: Line 53:
  
 
=References=
 
=References=
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_10.htm Abramowitz and Stegun]<br />
+
* {{BookReference|Handbook of mathematical functions with formulas, graphs, and mathematical tables|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Binomial theorem|next=Binomial coefficient (n choose k) equals (n choose (n-k))}}: 3.1.2
[http://www.jstor.org/discover/10.2307/2975209?sid=21105065140641&uid=4&uid=70&uid=2&uid=3739256&uid=3739744&uid=2129 The Binomial Coefficient Function]<br />
+
*[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_10.htm Abramowitz and Stegun]<br />
 +
*[http://www.jstor.org/discover/10.2307/2975209?sid=21105065140641&uid=4&uid=70&uid=2&uid=3739256&uid=3739744&uid=2129 The Binomial Coefficient Function]<br />
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 02:33, 4 June 2016

The binomial coefficients are defined by the formula $${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$


Properties

Proposition: $\displaystyle{n \choose k} = {n \choose {n-k}} = (-1)^k {{k-n-1} \choose k}$

Proof:

Proposition: $\displaystyle{{n+1} \choose k} = {n \choose k} + {n \choose {k-1}}$

Proof:

Proposition: ${n \choose 0} = {n \choose n} = 1$

Proof:

Proposition: $1 + \displaystyle {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = 2^n$

Proof:

Proposition: $1 - \displaystyle {n \choose 1} + {n \choose 2} - \ldots + (-1)^n {n \choose n} =0$

Proof:

Binomial theorem

Videos

Pascal's Triangle and the Binomial Coefficients
Example of choose function (Binomial Coefficient)
Binomial coefficients

References