Difference between revisions of "Polar coordinates"
From specialfunctionswiki
(Created page with "Polar coordinates in the $xy$-plane are given by the variable assignments $$\left\{ \begin{array}{ll} x &= r\cos(\theta) \\ y &= r\sin(\theta) \end{array} \right.,$$ and coinc...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Real and imaginary parts of log|next=Logarithm (multivalued)}}: 4.1.3 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Real and imaginary parts of log|next=Logarithm (multivalued)}}: $4.1.3$ |
Latest revision as of 17:23, 27 June 2016
Polar coordinates in the $xy$-plane are given by the variable assignments $$\left\{ \begin{array}{ll} x &= r\cos(\theta) \\ y &= r\sin(\theta) \end{array} \right.,$$ and coincidentally, the Pythagorean identity for sin and cos implies that $r=\sqrt{x^2+y^2}$ and that $\theta=\mathrm{arctan} \left( \dfrac{y}{x} \right)$ follows from the definition of tangent and application of the inverse tangent function.
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.1.3$