Difference between revisions of "Book:Arthur Erdélyi/Higher Transcendental Functions Volume II"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
===Contents===
 
===Contents===
 
:FOREWARD
 
:FOREWARD
:CHAPTER VII BESSEL FUNCTIONS FIRST PART: THEORY
+
:CHAPTER VII  
::7.1. Introduction
+
::BESSEL FUNCTIONS FIRST PART: THEORY
::7.2. Bessel's differential equation
+
:::7.1. Introduction
:::7.2.1. Bessel functions of general order
+
:::7.2. Bessel's differential equation
:::7.2.3. Kelvin's function and related functions
+
::::7.2.1. Bessel functions of general order
:::7.2.4. Bessel functions of integer order
+
::::7.2.3. Kelvin's function and related functions
:::7.2.5. Modified Bessel functions of integer order
+
::::7.2.4. Bessel functions of integer order
:::7.2.6. Spherical Bessel functions
+
::::7.2.5. Modified Bessel functions of integer order
:::7.2.7. Products of Bessel functions
+
::::7.2.6. Spherical Bessel functions
:::7.2.8. Miscellaneous results
+
::::7.2.7. Products of Bessel functions
::7.3. Integral representations
+
::::7.2.8. Miscellaneous results
:::7.3.1. Bessel coefficients
+
:::7.3. Integral representations
:::7.3.2. Integral representations of the Poisson type
+
::::7.3.1. Bessel coefficients
:::7.3.3. Representations by loop integrals
+
::::7.3.2. Integral representations of the Poisson type
:::7.3.4. Shläfli's, Gubler's, Sonine's and related integrals
+
::::7.3.3. Representations by loop integrals
:::7.3.5. Sommerfeld's integrals
+
::::7.3.4. Shläfli's, Gubler's, Sonine's and related integrals
:::7.3.6. Barnes' integrals
+
::::7.3.5. Sommerfeld's integrals
:::7.3.7. Airy's integrals
+
::::7.3.6. Barnes' integrals
::7.4. Asymptotic expansions
+
::::7.3.7. Airy's integrals
:::7.4.1. Large variable
+
:::7.4. Asymptotic expansions
:::7.4.2. Large order
+
::::7.4.1. Large variable
:::7.4.3. Transitional regions
+
::::7.4.2. Large order
:::7.4.4. Uniform asymptotic expansions
+
::::7.4.3. Transitional regions
::7.5. Related functions
+
::::7.4.4. Uniform asymptotic expansions
:::7.5.1. Neumann's and related polynomials
+
:::7.5. Related functions
:::7.5.2. Lommel's poylnomials
+
::::7.5.1. Neumann's and related polynomials
:::7.5.3. Anger-Weber functions
+
::::7.5.2. Lommel's poylnomials
:::7.5.4. Struves' functions
+
::::7.5.3. Anger-Weber functions
:::7.5.5. Lommel's functions
+
::::7.5.4. Struves' functions
:::7.5.6. Some other notations and related functions
+
::::7.5.5. Lommel's functions
::7.6. Addition theorems
+
::::7.5.6. Some other notations and related functions
:::7.6.1. Gegenbauer's addition theorem
+
:::7.6. Addition theorems
:::7.6.2. Graf's addition theorem
+
::::7.6.1. Gegenbauer's addition theorem
::7.7. Integral formulas
+
::::7.6.2. Graf's addition theorem
:::7.7.1. Indefinite integrals
+
:::7.7. Integral formulas
:::7.7.2. Finite integrals
+
::::7.7.1. Indefinite integrals
:::7.7.3. Infinite integrals with exponential functions
+
::::7.7.2. Finite integrals
:::7.7.4. The discontinuous integral of Weber and Schafheitlin
+
::::7.7.3. Infinite integrals with exponential functions
:::7.7.5. Sonine and Gegenbauer's integrals and generalizations
+
::::7.7.4. The discontinuous integral of Weber and Schafheitlin
:::7.7.6. Macdonald's and Nicholson's formulas
+
::::7.7.5. Sonine and Gegenbauer's integrals and generalizations
:::7.7.7. Integrals with respect to order
+
::::7.7.6. Macdonald's and Nicholson's formulas
::7.8. Relations between Bessel and Legendre functions
+
::::7.7.7. Integrals with respect to order
::7.9. Zeros of the Bessel functions
+
:::7.8. Relations between Bessel and Legendre functions
::7.10. Series and integral representations of arbitrary functions
+
:::7.9. Zeros of the Bessel functions
:::7.10.1. Neumann's series
+
:::7.10. Series and integral representations of arbitrary functions
:::7.10.2. Kapteyn series
+
::::7.10.1. Neumann's series
:::7.10.3. Schlömilch series
+
::::7.10.2. Kapteyn series
:::7.10.4. Fourier-Bessel and Dini series
+
::::7.10.3. Schlömilch series
:::7.10.5. Integral representations of arbitrary functions
+
::::7.10.4. Fourier-Bessel and Dini series
:SECOND PART: FORMULAS
+
::::7.10.5. Integral representations of arbitrary functions
::7.11. Elementary relations and miscellaneous formulas
+
::SECOND PART: FORMULAS
::7.12. Integral representations
+
:::7.11. Elementary relations and miscellaneous formulas
::7.13. Asymptotic expansions
+
:::7.12. Integral representations
:::7.13.1. Large variable
+
:::7.13. Asymptotic expansions
:::7.13.2. Large order
+
::::7.13.1. Large variable
:::7.13.3. Transitional regions
+
::::7.13.2. Large order
:::7.13.4. Uniform asymptotic expansions
+
::::7.13.3. Transitional regions
::7.14. Integral formulas
+
::::7.13.4. Uniform asymptotic expansions
:::7.14.1. Finite integrals
+
:::7.14. Integral formulas
:::7.14.2. Infinite integrals
+
::::7.14.1. Finite integrals
::7.15. Series of Bessel functions
+
::::7.14.2. Infinite integrals
::References
+
:::7.15. Series of Bessel functions
 +
:::References
 
[[Category:Books]]
 
[[Category:Books]]

Revision as of 05:52, 5 June 2016


Harry Bateman: Higher Transcendental Functions, Volume I

Published $1953$, Dover Publications

ISBN 0-486-44614-X.


Online mirrors

hosted by Caltech

Contents

FOREWARD
CHAPTER VII
BESSEL FUNCTIONS FIRST PART: THEORY
7.1. Introduction
7.2. Bessel's differential equation
7.2.1. Bessel functions of general order
7.2.3. Kelvin's function and related functions
7.2.4. Bessel functions of integer order
7.2.5. Modified Bessel functions of integer order
7.2.6. Spherical Bessel functions
7.2.7. Products of Bessel functions
7.2.8. Miscellaneous results
7.3. Integral representations
7.3.1. Bessel coefficients
7.3.2. Integral representations of the Poisson type
7.3.3. Representations by loop integrals
7.3.4. Shläfli's, Gubler's, Sonine's and related integrals
7.3.5. Sommerfeld's integrals
7.3.6. Barnes' integrals
7.3.7. Airy's integrals
7.4. Asymptotic expansions
7.4.1. Large variable
7.4.2. Large order
7.4.3. Transitional regions
7.4.4. Uniform asymptotic expansions
7.5. Related functions
7.5.1. Neumann's and related polynomials
7.5.2. Lommel's poylnomials
7.5.3. Anger-Weber functions
7.5.4. Struves' functions
7.5.5. Lommel's functions
7.5.6. Some other notations and related functions
7.6. Addition theorems
7.6.1. Gegenbauer's addition theorem
7.6.2. Graf's addition theorem
7.7. Integral formulas
7.7.1. Indefinite integrals
7.7.2. Finite integrals
7.7.3. Infinite integrals with exponential functions
7.7.4. The discontinuous integral of Weber and Schafheitlin
7.7.5. Sonine and Gegenbauer's integrals and generalizations
7.7.6. Macdonald's and Nicholson's formulas
7.7.7. Integrals with respect to order
7.8. Relations between Bessel and Legendre functions
7.9. Zeros of the Bessel functions
7.10. Series and integral representations of arbitrary functions
7.10.1. Neumann's series
7.10.2. Kapteyn series
7.10.3. Schlömilch series
7.10.4. Fourier-Bessel and Dini series
7.10.5. Integral representations of arbitrary functions
SECOND PART: FORMULAS
7.11. Elementary relations and miscellaneous formulas
7.12. Integral representations
7.13. Asymptotic expansions
7.13.1. Large variable
7.13.2. Large order
7.13.3. Transitional regions
7.13.4. Uniform asymptotic expansions
7.14. Integral formulas
7.14.1. Finite integrals
7.14.2. Infinite integrals
7.15. Series of Bessel functions
References