Difference between revisions of "Versine"
From specialfunctionswiki
(Created page with "The versine function $\mathrm{versin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\mathrm{versin}(z)=1-\cos(z),$$ where $ \cos$ denotes the [[cosine]...") |
|||
Line 6: | Line 6: | ||
=References= | =References= | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral from 0 to infinity of cos(mt)/(1+t^2)dt equals (pi/2)e^(-m)|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral from 0 to infinity of cos(mt)/(1+t^2)dt equals (pi/2)e^(-m)|next=Coversine}}: 4.3.147 |
Revision as of 04:28, 6 June 2016
The versine function $\mathrm{versin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\mathrm{versin}(z)=1-\cos(z),$$ where $ \cos$ denotes the cosine function.
Properties
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 4.3.147