Difference between revisions of "Versine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The versine function $\mathrm{versin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\mathrm{versin}(z)=1-\cos(z),$$ where $ \cos$ denotes the [[cosine]...")
 
Line 6: Line 6:
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral from 0 to infinity of cos(mt)/(1+t^2)dt equals (pi/2)e^(-m)|next=Law of Sines}}: 4.3.147
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral from 0 to infinity of cos(mt)/(1+t^2)dt equals (pi/2)e^(-m)|next=Coversine}}: 4.3.147

Revision as of 04:28, 6 June 2016

The versine function $\mathrm{versin} \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\mathrm{versin}(z)=1-\cos(z),$$ where $ \cos$ denotes the cosine function.

Properties

References