Difference between revisions of "Relationship between Anger function and Bessel J"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Relationship between Anger function and Bessel J sub nu|Theorem]]:</strong> The following formula holds for [[integer]] $n$:
+
The following formula holds for [[integer]] $n$:
 
$$\mathbf{J}_n(z)=J_n(z),$$
 
$$\mathbf{J}_n(z)=J_n(z),$$
 
where $\mathbf{J}_n$ denotes an [[Anger function]] and $J_n$ denotes a [[Bessel J sub nu|Bessel function of the first kind]].
 
where $\mathbf{J}_n$ denotes an [[Anger function]] and $J_n$ denotes a [[Bessel J sub nu|Bessel function of the first kind]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
 
</div>
+
==References==

Revision as of 05:52, 6 June 2016

Theorem

The following formula holds for integer $n$: $$\mathbf{J}_n(z)=J_n(z),$$ where $\mathbf{J}_n$ denotes an Anger function and $J_n$ denotes a Bessel function of the first kind.

Proof

References