Difference between revisions of "Relationship between Bessel J and hypergeometric 0F1"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between Bessel J sub nu and hypergeometric 0F1|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$J_{\nu}(z) = \left( \dfrac{z}{2} \right)^{\nu} \dfrac{1}{\Gamma(\nu+1)} {}_0F_1 \left(-;\nu+1;-\dfrac{z^2}{4} \right),$$
 
$$J_{\nu}(z) = \left( \dfrac{z}{2} \right)^{\nu} \dfrac{1}{\Gamma(\nu+1)} {}_0F_1 \left(-;\nu+1;-\dfrac{z^2}{4} \right),$$
 
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]], $\Gamma$ denotes the [[gamma]] function and ${}_0F_1$ denotes the [[hypergeometric pFq]].
 
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]], $\Gamma$ denotes the [[gamma]] function and ${}_0F_1$ denotes the [[hypergeometric pFq]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==

Revision as of 19:57, 9 June 2016

Theorem

The following formula holds: $$J_{\nu}(z) = \left( \dfrac{z}{2} \right)^{\nu} \dfrac{1}{\Gamma(\nu+1)} {}_0F_1 \left(-;\nu+1;-\dfrac{z^2}{4} \right),$$ where $J_{\nu}$ denotes the Bessel function of the first kind, $\Gamma$ denotes the gamma function and ${}_0F_1$ denotes the hypergeometric pFq.

Proof

References