Difference between revisions of "Relationship between Bessel I and Bessel J"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between Bessel I sub n and Bessel J sub n|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$I_n(x)=i^{-n}J_n(ix),$$
 
$$I_n(x)=i^{-n}J_n(ix),$$
 
where $I_n$ denotes the [[modified Bessel I sub nu|modified Bessel $I$]] and $J_n$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
 
where $I_n$ denotes the [[modified Bessel I sub nu|modified Bessel $I$]] and $J_n$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==

Revision as of 19:57, 9 June 2016

Theorem

The following formula holds: $$I_n(x)=i^{-n}J_n(ix),$$ where $I_n$ denotes the modified Bessel $I$ and $J_n$ denotes the Bessel function of the first kind.

Proof

References