Difference between revisions of "Gauss' formula for gamma function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $z \in \mathbb{C} \setminus \{0,-1,-2,\ldots\}$: $$\Gamma(z) = \displaystyle\lim_{n \rightarrow \infty} \dfrac{n! n^z}{z(z+1)\ldots...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Gauss' formula for gamma function}}: 6.1.1
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Gamma|next=Product representation for reciprocal gamma}}: 6.1.2

Latest revision as of 07:03, 8 June 2016

Theorem

The following formula holds for $z \in \mathbb{C} \setminus \{0,-1,-2,\ldots\}$: $$\Gamma(z) = \displaystyle\lim_{n \rightarrow \infty} \dfrac{n! n^z}{z(z+1)\ldots(z+n)},$$ where $\Gamma$ denotes the gamma function and $n!$ denotes the factorial.

Proof

References