Difference between revisions of "Euler-Mascheroni constant"
Line 44: | Line 44: | ||
=References= | =References= | ||
+ | * {{BookReference|A course of modern analysis|1920|Edmund Taylor Whittaker|author2=George Neville Watson|prev=Gamma|next=Reciprocal gamma written as an infinite product}}: §12.1 | ||
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=fixme}}: §1.1 (4) | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=fixme}}: §1.1 (4) | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Reciprocal gamma written as an infinite product|next=findme}}: 6.1.3 | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Reciprocal gamma written as an infinite product|next=findme}}: 6.1.3 |
Revision as of 01:10, 12 June 2016
The Euler-Mascheroni constant is the number $\gamma$ defined by the formula $$\gamma = \lim_{m \rightarrow \infty} 1 + \dfrac{1}{2} + \ldots + \dfrac{1}{m}-\log(m) = 0.577215664901532 \ldots.$$
Properties
Theorem: The limit defining $\gamma$ exists.
Proof: Let $u_n=\displaystyle\int_0^1 \dfrac{t}{n(t+n)} dt$. Clearly, $$0 < u_n < \displaystyle\int_0^1 \dfrac{1}{n^2} dt = \dfrac{1}{n^2}.$$ Now compute $$\begin{array}{ll} u_n &= \dfrac{1}{n} \displaystyle\int_0^1 1 - \dfrac{n}{t+n} dt \\ &= \dfrac{1}{n} \left[ 1 - n(\log (1+n)-\log n) \right] \\ &= \dfrac{1}{n} - \log \left(\dfrac{n+1}{n} \right). \end{array}$$
Since $u_n < \dfrac{1}{n^2}$ and we know that $\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k^2}$ converges (it is the Riemann zeta function evaluated at $z=2$), we can conclude that $\displaystyle\sum_{k=1}^{\infty} u_k$ also converges.
Notice that due to telescoping and the properties of the logarithm, $$\displaystyle\sum_{k=1}^m \log \left( \dfrac{k+1}{k} \right) = \log \left(\dfrac{2}{1} \right) + \log\left( \dfrac{3}{2} \right) + \ldots \log \left( \dfrac{m+1}{m} \right)= \log(m+1)$$ Now we see $$\begin{array}{ll} \displaystyle\sum_{k=1}^{\infty} u_k &= \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k} - \log \left( \dfrac{k+1}{k} \right) \\ &=\displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{m} \dfrac{1}{k} - \log(m+1) \right]. \end{array}$$ Since $\displaystyle\lim_{m \rightarrow \infty} \log \left( \dfrac{m+1}{m} \right)=0$, we may rewrite it as $\log(m+1)-\log(m)$ and insert it into the above equation to get $$\begin{array}{ll} \displaystyle\sum_{k=1}^{\infty} u_k &=\displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{m} \dfrac{1}{k} - \log(m+1) + \log(m+1)-\log(m) \right] \\ &= \displaystyle\lim_{m \rightarrow \infty} \left( 1 + \dfrac{1}{2} + \dfrac{1}{3} + \ldots + \dfrac{1}{m} - \log(m) \right), \end{array}$$ as was to be shown. █
Reciprocal gamma written as an infinite product
Exponential integral Ei series
Further properties
The Euler-Mascheroni constant appears in the definition of...
- the hyperbolic cosine integral
- the Barnes G function
See Also
References
- 1920: Edmund Taylor Whittaker and George Neville Watson: A course of modern analysis ... (previous) ... (next): §12.1
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): §1.1 (4)
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 6.1.3