Difference between revisions of "Derivative of cotangent"
From specialfunctionswiki
Line 16: | Line 16: | ||
==References== | ==References== | ||
+ | *{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Derivative of secant|next=findme}}: $4.3.110$ | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Proven]] | [[Category:Proven]] |
Revision as of 02:49, 5 January 2017
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x}\cot(x)=-\csc^2(x),$$ where $\cot$ denotes the cotangent and $\csc$ denotes the cosecant.
Proof
Apply the quotient rule to the definition of cotangent using derivative of sine and derivative of cosine to see $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}x} \cot(x) &= \dfrac{\mathrm{d}}{\mathrm{d}x} \left[ \dfrac{\cos(x)}{\sin(x)} \right] \\ &= \dfrac{-\sin^2(x)-\cos^2(x)}{\sin^2(x)} \\ &= -\dfrac{\sin^2(x)+\cos^2(x)}{\sin^2(x)}. \end{array}$$ Now apply the Pythagorean identity for sin and cos and the definition of cosecant to see $$\dfrac{\mathrm{d}}{\mathrm{d}x} \cot(x) = -\dfrac{1}{\sin^2(x)} = -\csc^2(x),$$ as was to be shown. █
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.3.110$