Difference between revisions of "Sum of values of sinc"

From specialfunctionswiki
Jump to: navigation, search
 
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$\displaystyle\sum_{k=1}^{\infty} \mathrm{sinc}(k) = \dfrac{\pi-1}{2},$$
 
$$\displaystyle\sum_{k=1}^{\infty} \mathrm{sinc}(k) = \dfrac{\pi-1}{2},$$
where $\mathrm{sinc}$ denotes the [[sinc|$\mathrm{sinc}$]] function and $\pi$ denotes [[Pi]].
+
where $\mathrm{sinc}$ denotes the [[sinc|$\mathrm{sinc}$]] function and $\pi$ denotes [[pi]].
  
 
==Proof==
 
==Proof==

Latest revision as of 08:02, 8 June 2016

Theorem

The following formula holds: $$\displaystyle\sum_{k=1}^{\infty} \mathrm{sinc}(k) = \dfrac{\pi-1}{2},$$ where $\mathrm{sinc}$ denotes the $\mathrm{sinc}$ function and $\pi$ denotes pi.

Proof

References