Difference between revisions of "Exponential integral Ei"

From specialfunctionswiki
Jump to: navigation, search
Line 19: Line 19:
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0018%7CLOG_0048 On certain definite integrals involving the exponential-integral - J.W.L. Glaisher]
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0018%7CLOG_0048 On certain definite integrals involving the exponential-integral - J.W.L. Glaisher]
  
<center>{{:*-integral functions footer}}</center>
+
{{:*-integral functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 23:09, 11 June 2016

The exponential integral $\mathrm{Ei}$ is defined by $$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t, \quad \left|\mathrm{arg}(-z) \right|<\pi.$$


Properties

Relationship between logarithmic integral and exponential integral
Exponential integral Ei series
Relationship between exponential integral Ei, cosine integral, and sine integral

References

Exponential Integral and Related Functions
On certain definite integrals involving the exponential-integral - J.W.L. Glaisher

$\ast$-integral functions