Difference between revisions of "Sech"
From specialfunctionswiki
Line 18: | Line 18: | ||
=See Also= | =See Also= | ||
[[Arcsech]] | [[Arcsech]] | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Csch|next=Coth}}: 4.5.5 | ||
<center>{{:Hyperbolic trigonometric functions footer}}</center> | <center>{{:Hyperbolic trigonometric functions footer}}</center> | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 22:00, 21 June 2016
The hyperbolic secant function $\mathrm{sech} \colon \mathbb{R} \rightarrow (0,1]$ is defined by $$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)}.$$ Since this function is not one-to-one, we define the inverse hyperbolic secant function as the inverse function of $\mathrm{sech}$ restricted to $[0,\infty)$.
Domain coloring of analytic continuation of $\mathrm{sech}$.
Properties
Derivative of sech
Antiderivative of sech
Relationship between cosine, Gudermannian, and sech
Relationship between sech, inverse Gudermannian, and cos
See Also
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 4.5.5