Difference between revisions of "Bessel polynomial in terms of Bessel functions"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^{\frac{1}{2}} e^{ir} \left[ \dfrac{J_{n +\frac{1}{2}}(r)}{i^{n+1}}+i^nJ_{-n-\frac{1}{2}}(r) \right],$$
 
$$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^{\frac{1}{2}} e^{ir} \left[ \dfrac{J_{n +\frac{1}{2}}(r)}{i^{n+1}}+i^nJ_{-n-\frac{1}{2}}(r) \right],$$
where $y_n$ denotes a [[Bessel polynomial]] and $J_{\nu}$ denotes a [[Bessel function]].
+
where $y_n$ denotes a [[Bessel polynomial]] and $J_{\nu}$ denotes the [[Bessel J]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==

Revision as of 20:11, 9 June 2016

Theorem

The following formula holds: $$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^{\frac{1}{2}} e^{ir} \left[ \dfrac{J_{n +\frac{1}{2}}(r)}{i^{n+1}}+i^nJ_{-n-\frac{1}{2}}(r) \right],$$ where $y_n$ denotes a Bessel polynomial and $J_{\nu}$ denotes the Bessel J.

Proof

References