Difference between revisions of "Jacobi P"

From specialfunctionswiki
Jump to: navigation, search
 
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials]]<br />
 
[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials]]<br />
 +
[[Differential equation for Jacobi P]]<br />
  
 
=References=
 
=References=

Latest revision as of 03:30, 11 June 2016

Let $\alpha > -1$ and $\beta > -1$. The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are orthogonal polynomials with weight function $w(x)=(1-x)^{\alpha}(1-x)^{\beta}$ on the interval $[-1,1]$ that obey $P_n^{(\alpha,\beta)}(1) = {{n + \alpha} \choose n}$. $$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$ where ${}_2F_1$ is the generalized hypergeometries series.

Properties

Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials
Differential equation for Jacobi P

References

Orthogonal polynomials