Difference between revisions of "Hankel H (1)"

From specialfunctionswiki
Jump to: navigation, search
Line 9: Line 9:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 
<center>{{:Hankel functions footer}}</center>
 
  
 
=See Also=
 
=See Also=
Line 18: Line 16:
 
=References=
 
=References=
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Bessel Y|next=Hankel H (1) in terms of csc and Bessel J}}: 9.1.3
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Bessel Y|next=Hankel H (1) in terms of csc and Bessel J}}: 9.1.3
 +
 +
{{:Hankel functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 04:02, 11 June 2016

The Hankel functions of the first kind are defined by $$H_{\nu}^{(1)}(z)=J_{\nu}(z)+iY_{\nu}(z),$$ where $J_{\nu}$ is the Bessel function of the first kind and $Y_{\nu}$ is the Bessel function of the second kind. Note the similarity of these functions to the Hankel functions of the second kind.

See Also

Bessel $J$
Bessel $Y$

References

Hankel functions