Difference between revisions of "Value of polygamma at 1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial$, and $\zeta$...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following formula holds:
+
The following formula holds for $m=1,2,3,\ldots$:
 
$$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$
 
$$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$
 
where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]]$, and $\zeta$ denotes the [[Riemann zeta]] function.
 
where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]]$, and $\zeta$ denotes the [[Riemann zeta]] function.

Revision as of 08:08, 11 June 2016

Theorem

The following formula holds for $m=1,2,3,\ldots$: $$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial$, and $\zeta$ denotes the Riemann zeta function.

Proof

Reference