Difference between revisions of "Value of polygamma at 1"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial$, and $\zeta$...") |
|||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | The following formula holds: | + | The following formula holds for $m=1,2,3,\ldots$: |
$$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$ | $$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]]$, and $\zeta$ denotes the [[Riemann zeta]] function. | where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]]$, and $\zeta$ denotes the [[Riemann zeta]] function. |
Revision as of 08:08, 11 June 2016
Theorem
The following formula holds for $m=1,2,3,\ldots$: $$\psi^{(m)}(1)=(-1)^{m+1} m! \zeta(m+1),$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial$, and $\zeta$ denotes the Riemann zeta function.
Proof
Reference
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions: 6.4.2