Difference between revisions of "Digamma"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Partial derivative of beta function]]<br />
<strong>Theorem:</strong> $\psi(1)=-\gamma$ and for integers $n\geq 2$,
 
$$\psi(n)=-\gamma + \displaystyle\sum_{k=1}^{n-1} \dfrac{1}{k}$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> $\psi\left(\dfrac{1}{2}\right)=-\gamma-2\log(2)$ and for integers $n \geq 1$,
 
$$\psi \left( n + \dfrac{1}{2} \right) = -\gamma - 2 \log(2) + 2 \left( 1 + \dfrac{1}{3} + \ldots + \dfrac{1}{2n-1} \right).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> $\psi(z+1) = \psi(z) + \dfrac{1}{z}$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> $\psi(z+n)=\dfrac{1}{(n-1)+z} + \dfrac{1}{(n-2)+z} + \ldots + \dfrac{1}{2+z} + \dfrac{1}{1+z} + \psi(1+z)$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> $\psi(1-z)=\psi(z) + \pi \cot(\pi z)$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> $\psi(2z)=\dfrac{1}{2}\psi(z) + \dfrac{1}{2} \psi \left( z + \dfrac{1}{2} \right) + \log(2)$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> $\psi(\overline{z})=\overline{\psi(z)}$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
{{:Partial derivative of beta function}}
 
  
 
=See Also=
 
=See Also=
Line 69: Line 18:
  
 
=References=
 
=References=
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=findme}}: $\S 1.7 (1)$
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 15:44, 23 June 2016

The digamma function $\psi$ is defined by $$\psi(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$

Properties

Partial derivative of beta function

See Also

Gamma function
Polygamma function
Trigamma function

References