Difference between revisions of "Exponential integral Ei"

From specialfunctionswiki
Jump to: navigation, search
Line 14: Line 14:
 
[[Exponential integral Ei series]]<br />
 
[[Exponential integral Ei series]]<br />
 
[[Relationship between exponential integral Ei, cosine integral, and sine integral]]<br />
 
[[Relationship between exponential integral Ei, cosine integral, and sine integral]]<br />
 +
 +
=See Also=
 +
[[Exponential integral E]]
  
 
=References=
 
=References=
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_228.htm Exponential Integral and Related Functions]<br />
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral E|next=Logarithmic integral}}: $5.1.2$
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0018%7CLOG_0048 On certain definite integrals involving the exponential-integral - J.W.L. Glaisher]
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0018%7CLOG_0048 On certain definite integrals involving the exponential-integral - J.W.L. Glaisher]
  

Revision as of 18:39, 7 August 2016

The exponential integral $\mathrm{Ei}$ is defined by $$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t, \quad \left|\mathrm{arg}(-z) \right|<\pi.$$


Properties

Relationship between logarithmic integral and exponential integral
Exponential integral Ei series
Relationship between exponential integral Ei, cosine integral, and sine integral

See Also

Exponential integral E

References

On certain definite integrals involving the exponential-integral - J.W.L. Glaisher

$\ast$-integral functions