Difference between revisions of "Mangoldt"

From specialfunctionswiki
Jump to: navigation, search
Line 5: Line 5:
 
0 &; \mathrm{otherwise}.
 
0 &; \mathrm{otherwise}.
 
\end{array} \right.$$
 
\end{array} \right.$$
 +
 +
 +
<div align="center">
 +
<gallery>
 +
File:Mangoldtplot.png|Graph of $\Lambda$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 05:58, 22 June 2016

The Mangoldt function is defined by the formula $$\Lambda(n) = \left\{ \begin{array}{ll} \log p &; n=p^k \mathrm{\hspace{2pt}for\hspace{2pt}some\hspace{2pt}prime\hspace{2pt}}p\mathrm{\hspace{2pt}and\hspace{2pt}integer\hspace{2pt}}k\geq 1, \\ 0 &; \mathrm{otherwise}. \end{array} \right.$$


Properties

Relationship between logarithm and Mangoldt

Videos

Number Theory 31: Liouville and mangoldt functions
Number theory: Arithmetic functions #1