Difference between revisions of "Q-exponential E sub q"

From specialfunctionswiki
Jump to: navigation, search
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
[[Meromorphic continuation of q-exponential E sub q]]<br />
 
[[Meromorphic continuation of q-exponential E sub q]]<br />
 
+
[[Q-difference equation for q-exponential E sub q]]<br />
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$D_q E_q(z) = aE_q(az),$$
 
where $D_q$ is the [[q-difference operator|$q$-difference operator]] and $E_q$ is the [[Q-exponential E sub q|$q$-exponential $E_q$]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=References=
 
=References=

Revision as of 03:58, 17 June 2016

If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.

Properties

Meromorphic continuation of q-exponential E sub q
Q-difference equation for q-exponential E sub q

References