Difference between revisions of "Q-exponential E sub 1/q"

From specialfunctionswiki
Jump to: navigation, search
Line 13: Line 13:
  
 
=References=
 
=References=
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-difference equation for q-exponential E sub q|next=findme}}: (6.153)
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-difference equation for q-exponential E sub q|next=Q-difference equation for q-exponential E sub 1/q}}: (6.153)
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 22:46, 16 June 2016

The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{ {k \choose 2} }}{[k]_q!} z^k.$$

Properties

Theorem: The following formula holds: $$D_q E_{\frac{1}{q}}(az)=aE_{\frac{1}{q}}(qaz),$$ where $D_q$ denotes the q-difference operator and $E_{\frac{1}{q}}$ denotes the $q$-exponential $E_{\frac{1}{q}}$.

Proof:

References