Difference between revisions of "Q-exponential E sub q"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is  
 
If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is  
 
$$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$
 
$$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$
Line 6: Line 7:
 
[[Meromorphic continuation of q-exponential E sub q]]<br />
 
[[Meromorphic continuation of q-exponential E sub q]]<br />
 
[[Q-difference equation for q-exponential E sub q]]<br />
 
[[Q-difference equation for q-exponential E sub q]]<br />
 +
 +
=See also=
 +
[[q-Cos]]<br />
 +
[[q-Exponential E sub 1/q]]<br />
 +
[[q-Sin]]<br />
  
 
=References=
 
=References=

Revision as of 23:11, 26 June 2016

If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.

Properties

Meromorphic continuation of q-exponential E sub q
Q-difference equation for q-exponential E sub q

See also

q-Cos
q-Exponential E sub 1/q
q-Sin

References