Difference between revisions of "Sine integral"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
The sine integral is defined by
 
The sine integral is defined by
 
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$
 
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$
where $\mathrm{sinc}$ denotes the [[Sinc]] function.
+
where $\mathrm{sinc}$ denotes the [[sinc]] function.
  
 
<div align="center">
 
<div align="center">

Revision as of 00:19, 9 August 2016

The sine integral is defined by $$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$ where $\mathrm{sinc}$ denotes the sinc function.

Properties

Relationship between exponential integral Ei, cosine integral, and sine integral

Videos

Laplace Transform of Sine Integral

References

$\ast$-integral functions