Difference between revisions of "Digamma"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The digamma function $\psi$ is defined by
+
The digamma function $\psi \colon \mathbb{C} \setminus \{0,-1,-2,\ldots\} \rightarrow \mathbb{C}$ is defined by
 
$$\psi(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$
 
$$\psi(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$
  
Line 11: Line 11:
 
=Properties=
 
=Properties=
 
[[Partial derivative of beta function]]<br />
 
[[Partial derivative of beta function]]<br />
 +
[[Digamma at 1]]<br />
 
[[Digamma functional equation]]<br />
 
[[Digamma functional equation]]<br />
 
[[Digamma at n+1]]<br />
 
[[Digamma at n+1]]<br />

Revision as of 15:52, 23 June 2016

The digamma function $\psi \colon \mathbb{C} \setminus \{0,-1,-2,\ldots\} \rightarrow \mathbb{C}$ is defined by $$\psi(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$

Properties

Partial derivative of beta function
Digamma at 1
Digamma functional equation
Digamma at n+1

See Also

Gamma function
Polygamma function
Trigamma function

References