Difference between revisions of "Digamma at n+1"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\psi(n+1)=1+\dfrac{1}{2}+\dfrac{1}{3}+\ldots+\dfrac{1}{n} - \gamma=H_n - \gamma,$$ where $\psi$ denotes the digamma function and...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Digamma functional equation|next= | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Digamma functional equation|next=Digamma at z+n}}: $\S 1.7 (9)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 15:55, 23 June 2016
Theorem
The following formula holds: $$\psi(n+1)=1+\dfrac{1}{2}+\dfrac{1}{3}+\ldots+\dfrac{1}{n} - \gamma=H_n - \gamma,$$ where $\psi$ denotes the digamma function and $\gamma$ denotes the Euler-Mascheroni constant, and $H_n$ is the $n$th harmonic number.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.7 (9)$