Difference between revisions of "Jacobi theta 2"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The Jacobi $\vartheta_2$ function is defined by
+
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_2$ function is defined by
 
$$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$
 
$$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$
 
where $\cos$ denotes the [[cosine]] function.
 
where $\cos$ denotes the [[cosine]] function.

Revision as of 21:37, 25 June 2016

Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_2$ function is defined by $$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$ where $\cos$ denotes the cosine function.

Properties

References