Difference between revisions of "Convergence of Hypergeometric pFq"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "=Convergence= If any of the $a_j$'s is a a nonpositive integer, then the series terminates and is a polynomial. If any of the $b_{\ell}$'s is a nonpositive integer, the serie...")
 
Line 24: Line 24:
 
==Case II: $p=q+1$==
 
==Case II: $p=q+1$==
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Proposition:</strong> The series ${}_pF_q$ converges for all $t\in \mathbb{C}$ with $|t|<1$.<br />
+
<strong>Proposition:</strong> The [[hypergeometric pFq]] ${}_pF_q$ converges for all $t\in \mathbb{C}$ with $|t|<1$.<br />
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof: █</strong>
 
<strong>Proof: █</strong>

Revision as of 21:28, 26 June 2016

Convergence

If any of the $a_j$'s is a a nonpositive integer, then the series terminates and is a polynomial.

If any of the $b_{\ell}$'s is a nonpositive integer, the series diverges because of divison by zero.

The remaining convergence of the series can be split into three cases:

Case I: $p<q+1$

Proposition: The series ${}_pF_q$ converges for all $t \in \mathbb{C}$.

Proof: Notice if $t=0$ then the series converges trivially, so suppose $t \neq 0$. We will apply the ratio test. Let $\alpha_k=\dfrac{\vec{a}^{\overline{k}}t^k}{\vec{b}^{\overline{k}}k!}$. Then $$\begin{array}{ll} L &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\alpha_{k+1}}{\alpha_k} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\dfrac{\vec{a}^{\overline{k}}t^k}{\vec{b}^{\overline{k}}k!}}{\dfrac{\vec{a}^{\overline{k+1}}t^{k+1}}{\vec{b}^{\overline{k+1}}(k+1)!}} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\vec{a}^{\overline{k}} \vec{b}^{\overline{k+1}}(k+1)!t^k }{\vec{b}^{\overline{k}} \vec{a}^{\overline{k+1}}k!t^{k+1}} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{k(\vec{b}+k)}{(\vec{a}+k)t} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{O(k^{q+1})}{O(k^{p})}\right| \\ &= 0 < 1, \end{array}$$ therefore the series converges for all $t \in \mathbb{C}$. █

Case II: $p=q+1$

Proposition: The hypergeometric pFq ${}_pF_q$ converges for all $t\in \mathbb{C}$ with $|t|<1$.

Proof: █

Case III: $p>q+1$

Proposition: The series ${}_pF_q$ diverges for all $t \in \mathbb{C}$.

Proof: █