Difference between revisions of "Integral of Bessel J for nu=1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\displaystyle\int_0^z J_1(t) \mathrm{d}t = 1-J_0(z),$$ where $J_1$ denotes the Bessel function of the first kind. ==Pr...")
 
Line 5: Line 5:
  
 
==Proof==
 
==Proof==
 
+
Recall, from definition, that
 +
$$J_1(t) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kt^{2k+1}}{k! \Gamma(k+2)2^{2k+1}}.$$
 
==References==
 
==References==
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral of Bessel J for nu=n+1|next=findme}}: $11.1.6$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral of Bessel J for nu=n+1|next=findme}}: $11.1.6$

Revision as of 23:10, 20 February 2018

Theorem

The following formula holds: $$\displaystyle\int_0^z J_1(t) \mathrm{d}t = 1-J_0(z),$$ where $J_1$ denotes the Bessel function of the first kind.

Proof

Recall, from definition, that $$J_1(t) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kt^{2k+1}}{k! \Gamma(k+2)2^{2k+1}}.$$

References