Difference between revisions of "Hypergeometric pFq"

From specialfunctionswiki
Jump to: navigation, search
(${}_0F_1$)
Line 21: Line 21:
 
[[Hypergeometric 2F0]]<br />
 
[[Hypergeometric 2F0]]<br />
 
[[Hypergeometric 2F1]]<br />
 
[[Hypergeometric 2F1]]<br />
 
==${}_0F_1$==
 
 
==${}_1F_0$==
 
 
==${}_1F_1$==
 
 
==${}_1F_2$==
 
[[Relationship between Struve function and hypergeometric pFq]]<br />
 
 
==${}_2F_0$==
 
[[Bessel polynomial generalized hypergeometric]]<br />
 
  
 
=Videos=
 
=Videos=

Revision as of 05:23, 5 July 2016

Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. We will use the notation $\vec{a}=\displaystyle\prod_{j=1}^p a_j$ and $\vec{b}=\displaystyle\prod_{\ell=1}^q b_{\ell}$ and we define the notations $$\vec{a}^{\overline{k}} = \displaystyle\prod_{j=1}^p a_j^{\overline{k}},$$ and $$\vec{a}+k = \displaystyle\prod_{j=1}^p (a_j+k),$$ (and similar for $\vec{b}^{\overline{k}}$). Define the generalized hypergeometric function $${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;t)={}_pF_q(\vec{a};\vec{b};t)=\displaystyle\sum_{k=0}^{\infty}\dfrac{\displaystyle\prod_{j=1}^p a_j^{\overline{k}}}{\displaystyle\prod_{\ell=1}^q b_{\ell}^{\overline{k}}} \dfrac{t^k}{k!}.$$

Properties

Convergence of Hypergeometric pFq
Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq

Particular hypergeometric functions

Hypergeometric 0F0
Hypergeometric 1F0
Hypergeometric 0F1
Hypergeometric 1F1
Hypergeometric 2F1
Hypergeometric 1F2
Hypergeometric 2F0
Hypergeometric 2F1

Videos

Special functions - Hypergeometric series

References

Notes on hypergeometric functions
Rainville's Special Functions
Abramowitz and Stegun
Note on a hypergeometric series - Cayley