Difference between revisions of "Hypergeometric 0F1"

From specialfunctionswiki
Jump to: navigation, search
Line 11: Line 11:
  
 
=References=
 
=References=
 +
 +
{{:Hypergeometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 06:05, 10 January 2017

The hypergeometric ${}_0F_1$ is defined by the series $${}_0F_1(;a;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a)_k k!},$$ where $(a)_k$ denotes the Pochhammer symbol and $k!$ denotes the factorial.

Properties

Relationship between cosine and hypergeometric 0F1
Relationship between sine and hypergeometric 0F1
Relationship between cosh and hypergeometric 0F1
Relationship between sinh and hypergeometric 0F1
Relationship between Bessel J sub nu and hypergeometric 0F1

References

Hypergeometric functions