Difference between revisions of "Euler product for Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
==References==
 
==References==
 
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction (2)
 
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction (2)
 +
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Riemann zeta|next=}}: pg. $170$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 22:33, 8 July 2016

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ is the Riemann zeta function.

Proof

References