Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The inverse hyperbolic sine function $\mathrm{arcsinh} \colon \mathbb{R} \rightarrow \mathbb{R}$ function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function.
+
The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function. It may be defined by
 +
$$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$
  
 
<div align="center">
 
<div align="center">

Revision as of 23:49, 15 September 2016

The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the inverse function of the hyperbolic sine function. It may be defined by $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$

Properties

Derivative of arcsinh

See Also

Arcsin
Sine
Sinh

References

Abramowitz&Stegun

Inverse hyperbolic trigonometric functions