Difference between revisions of "Tanh"
From specialfunctionswiki
Line 25: | Line 25: | ||
=References= | =References= | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh|next=Csch}}: 4.5.3 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh|next=Csch}}: $4.5.3$ |
{{:Hyperbolic trigonometric functions footer}} | {{:Hyperbolic trigonometric functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 19:37, 22 November 2016
The hyperbolic tangent is defined by the formula $$\mathrm{tanh}(z)=\dfrac{\mathrm{sinh}(z)}{\mathrm{cosh}(z)},$$ where $\mathrm{sinh}$ is the hyperbolic sine and $\mathrm{cosh}$ is the hyperbolic cosine.
Domain coloring of $\tanh$.
Properties
Derivative of tanh
Antiderivative of tanh
Relationship between tanh and tan
Relationship between tan and tanh
Relationship between sine, Gudermannian, and tanh
Relationship between tanh, inverse Gudermannian, and sin
Taylor series for Gudermannian
Period of tanh
See Also
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.3$